autos

The potential of CO2-based production cycles in biotechnology to … – Nature.com


  • Paraschiv, S. & Paraschiv, L. S. Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Rep. 6, 237–242 (2020).


    Google Scholar
     

  • International Energy Agency (IEA). CO2 Emissions in 2022. CO2 Emiss. 2022 (2023). https://doi.org/10.1787/12ad1e1a-en.

  • Vom Berg, C., Carus, M., Stratmann, M. & Dammer, L. Renewable Carbon as a Guiding Principle for Sustainable Carbon Cycles. Renew. Carbon Initiat. (2022).

  • Wang, H., Peng, X., Zhang, H., Yang, S. & Li, H. Microorganisms-promoted biodiesel production from biomass: A review. Energy Convers. Manag. X 12, 100137 (2021).

    CAS 

    Google Scholar
     

  • Shears, J. Is there a role for synthetic biology in addressing the transition to a new low‐carbon energy system? Microb. Biotechnol. 12, 824–827 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srisawat, P., Higuchi-Takeuchi, M. & Numata, K. Microbial autotrophic biorefineries: Perspectives for biopolymer production. Polym. J. 54, 1139–1151 (2022).

    CAS 

    Google Scholar
     

  • Lee, R. A. & Lavoie, J.-M. From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim. Front 3, 6–11 (2013).


    Google Scholar
     

  • Caltzontzin-Rabell, V. et al. Raw materials for a biomass-based industry. in Biofuels and Biorefining 25–52 (Elsevier, 2022). https://doi.org/10.1016/B978-0-12-824116-5.00010-6.

  • Yang, F., Hanna, M. A. & Sun, R. Value-added uses for crude glycerol–a byproduct of biodiesel production. Biotechnol. Biofuels 5, 13 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Food and Agriculture Organization of the United Nations (FAO). Sustainable Food and Agriculture. online at https://www.fao.org/sustainability/news/detail/en/c/1274219/ (2020).

  • Gitz, V., Meybeck, A., Lipper, L., Young, C. & Braatz, S. Climate change and food security: Risks and responses. Food and Agriculture Organization of the United Nations (2016).

  • Cotton, C. A., Claassens, N. J., Benito-Vaquerizo, S. & Bar-Even, A. Renewable methanol and formate as microbial feedstocks. Curr. Opin. Biotechnol. 62, 168–180 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, W. et al. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat. Chem. Biol. 17, 845–855 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ewis, D. et al. Electrochemical reduction of CO2 into formate/formic acid: A review of cell design and operation. Sep. Purif. Technol. 316, 123811 (2023).

    CAS 

    Google Scholar
     

  • Li, P., Gong, S., Li, C. & Liu, Z. Analysis of routes for electrochemical conversion of CO2 to methanol. Clean. Energy 6, 967–975 (2022).


    Google Scholar
     

  • Lee, M. Y. et al. Current achievements and the future direction of electrochemical CO2 reduction: A short review. Crit. Rev. Environ. Sci. Technol. 50, 769–815 (2020).

    CAS 

    Google Scholar
     

  • Izadi, P. & Harnisch, F. Microbial | electrochemical CO2 reduction: To integrate or not to integrate? Joule 6, 935–940 (2022).


    Google Scholar
     

  • Nitopi, S. et al. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Santos Correa, S., Schultz, J., Lauersen, K. J. & Soares Rosado, A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J. Adv. Res. 47, 75–92 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Bar-Even, A., Noor, E. & Milo, R. A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63, 2325–2342 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Claassens, N. J. Reductive Glycine Pathway: A Versatile Route for One-Carbon Biotech. Trends Biotechnol. 39, 327–329 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Stephens, S., Mahadevan, R. & Allen, D. G. Engineering Photosynthetic Bioprocesses for Sustainable Chemical Production: A Review. Front. Bioeng. Biotechnol. 8, 610723 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. Main components of free organic carbon generated by obligate chemoautotrophic bacteria that inhibit their CO2 fixation. iScience 25, 105553 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarma, S. et al. Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery. 3 Biotech 11, 378 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veaudor, T. et al. Recent Advances in the Photoautotrophic Metabolism of Cyanobacteria: Biotechnological Implications. Life 10, 71 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, J. & Oh, M.-K. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. Bioresour. Technol. 344, 126307 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Bengelsdorf, F. R. et al. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis. Front. Microbiol. 7, 1–15 (2016).


    Google Scholar
     

  • Bourgade, B., Minton, N. P. & Islam, M. A. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. FEMS Microbiol. Rev. 45, 1–20 (2021).


    Google Scholar
     

  • Liew, F. E. et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. Biotechnol. 40, 335–344 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Yurimoto, H., Shiraishi, K. & Sakai, Y. Physiology of Methylotrophs Living in the Phyllosphere. Microorganisms 9, 809 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peña, D. A., Gasser, B., Zanghellini, J., Steiger, M. G. & Mattanovich, D. Metabolic engineering of Pichia pastoris. Metab. Eng. 50, 2–15 (2018).

    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Current advance in bioconversion of methanol to chemicals. Biotechnol. Biofuels 11, 1–11 (2018).


    Google Scholar
     

  • Nattermann, M. et al. Engineering a new-to-nature cascade for phosphate-dependent formate to formaldehyde conversion in vitro and in vivo. Nat. Commun. 14, 2682 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collas, F. et al. Engineering the biological conversion of formate into crotonate in Cupriavidus necator. bioRxiv (2023). https://doi.org/10.1101/2023.03.14.532570.

  • Gregory, G. J., Bennett, R. K. & Papoutsakis, E. T. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs. Metab. Eng. 71, 99–116 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Guerrero-Cruz, S. et al. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Front. Microbiol. 12, 1–28 (2021).


    Google Scholar
     

  • Fei, Q. et al. Bioconversion of natural gas to liquid fuel: Opportunities and challenges. Biotechnol. Adv. 32, 596–614 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kalyuzhnaya, M. G. et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4, 2785 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon, M., Ho, A. & Yoon, S. Novel approaches and reasons to isolate methanotrophic bacteria with biotechnological potentials: recent achievements and perspectives. Appl. Microbiol. Biotechnol. 103, 1–8 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Bar-Even, A., Noor, E., Lewis, N. E. & Milo, R. Design and analysis of synthetic carbon fixation pathways. Proc. Natl Acad. Sci. USA. 107, 8889–8894 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, B., Zhao, Y. & Yang, J. Recent Advances in Developing Artificial Autotrophic Microorganism for Reinforcing CO2 Fixation. Front. Microbiol. 11, 592631 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, V. J., Irla, M., Gil López, M., Brautaset, T. & Fernandes Brito, L. Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy. Microorganisms 10, 220 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keller, P. et al. Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle. Nat. Commun. 13, 1–13 (2022).


    Google Scholar
     

  • Zhan, C. et al. Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthetic methylotroph. Nat. Catal. 6, 435–450 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Tuyishime, P. et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab. Eng. 49, 220–231 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, F. Y. H., Jung, H. W., Tsuei, C. Y. & Liao, J. C. Converting Escherichia coli to a Synthetic Methylotroph Growing Solely on Methanol. Cell 182, 933–946.e14 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Gassler, T. et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat. Biotechnol. 38, 210–216 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Gassler, T., Baumschabl, M., Sallaberger, J., Egermeier, M. & Mattanovich, D. Adaptive laboratory evolution and reverse engineering enhances autotrophic growth in Pichia pastoris. Metab. Eng. 69, 112–121 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Gleizer, S. et al. Conversion of Escherichia coli to Generate All Biomass Carbon from CO2. Cell 179, 1255–1263.e12 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baumschabl, M. et al. Conversion of CO2 into organic acids by engineered autotrophic yeast. Proc. Natl Acad. Sci. 119, 1–10 (2022).


    Google Scholar
     

  • Noor, E., Flamholz, A., Liebermeister, W., Bar-Even, A. & Milo, R. A note on the kinetics of enzyme action: A decomposition that highlights thermodynamic effects. FEBS Lett. 587, 2772–2777 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Flamholz, A., Noor, E., Bar-Even, A. & Milo, R. EQuilibrator – The biochemical thermodynamics calculator. Nucl. Acids Res. 40, 770–775 (2012).


    Google Scholar
     

  • Noor, E. et al. Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism. PLoS Comput. Biol. 10, e1003483 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hädicke, O., von Kamp, A., Aydogan, T. & Klamt, S. OptMDFpathway: Identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli. PLOS Comput. Biol. 14, e1006492 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prioretti, L. et al. Carbon Fixation in the Chemolithoautotrophic Bacterium Aquifex aeolicus Involves Two Low-Potential Ferredoxins as Partners of the PFOR and OGOR Enzymes. Life 13, 627 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C. et al. A generalized computational framework to streamline thermodynamics and kinetics analysis of metabolic pathways. Metab. Eng. 57, 140–150 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, A. Y. & Lan, E. I. Chemical Production from Methanol Using Natural and Synthetic Methylotrophs. Biotechnol. J. 15, 1900356 (2020).

    CAS 

    Google Scholar
     

  • Cantera, S., Di Benedetto, F., Tumulero, B. F. & Sousa, D. Z. Microbial conversion of carbon dioxide and hydrogen into the fine chemicals hydroxyectoine and ectoine. Bioresour. Technol. 374, 128753 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Fan, L., Tuyishime, P., Zheng, P. & Sun, J. Synthetic Methylotrophy: A Practical Solution for Methanol-Based Biomanufacturing. Trends Biotechnol. 38, 650–666 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Logroño, W. et al. The microbiology of Power-To-X applications. FEMS Microbiol. Rev. 47, 1–23 (2023).


    Google Scholar
     

  • van den Bosch, B., Krasovic, J., Rawls, B. & Jongerius, A. L. Research targets for upcycling of CO2 to formate and carbon monoxide with paired electrolysis. Curr. Opin. Green. Sustain. Chem. 34, 100592 (2022).


    Google Scholar
     

  • Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    CAS 

    Google Scholar
     

  • IRENA. Renewable Power Generation Costs in 2021. International Renewable Energy Agency, Abu Dhabi. (2022).

  • Neven Valev. GlobalPetrolPrices.com. https://www.globalpetrolprices.com/electricity_prices/ (2023).

  • IEA. Transport sector CO2 emissions by mode in the Sustainable Development Scenario, 2000-2030. https://www.iea.org/data-and-statistics/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-development-scenario-2000-2030 (2019).

  • Canals Casals, L., Martinez-Laserna, E., Amante García, B. & Nieto, N. Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction. J. Clean. Prod. 127, 425–437 (2016).


    Google Scholar
     

  • Sun, X., Li, Z., Wang, X. & Li, C. Technology Development of Electric Vehicles: A Review. Energies 13, 90 (2019).


    Google Scholar
     

  • Peralta-Yahya, P. P., Zhang, F., Del Cardayre, S. B. & Keasling, J. D. Microbial engineering for the production of advanced biofuels. Nature 488, 320–328 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alishah Aratboni, H., Rafiei, N., Garcia-Granados, R., Alemzadeh, A. & Morones-Ramírez, J. R. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb. Cell Fact. 18, 178 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitaker, W. B., Sandoval, N. R., Bennett, R. K., Fast, A. G. & Papoutsakis, E. T. Synthetic methylotrophy: Engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Curr. Opin. Biotechnol. 33, 165–175 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Tudge, S. J., Purvis, A. & De Palma, A. The impacts of biofuel crops on local biodiversity: a global synthesis. Biodivers. Conserv. 30, 2863–2883 (2021).


    Google Scholar
     

  • Ganguly, P., Sarkhel, R. & Das, P. The second- and third-generation biofuel technologies: comparative perspectives. in Sustainable Fuel Technologies Handbook (eds. Dutta, S. & Mustansar Hussain, C. B. T.-S. F. T. H.) 29–50 (Elsevier, 2021). https://doi.org/10.1016/B978-0-12-822989-7.00002-0.

  • Okoye-Chine, C. G. et al. Conversion of carbon dioxide into fuels—A review. J. CO2 Util. 62, 102099 (2022).

    CAS 

    Google Scholar
     

  • Yao, B. et al. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nat. Commun. 11, 6395 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, M. A., Holmes, A. G., Conlon, B. M. & Savagian, P. J. The GM “Voltec” 4ET50 Multi-Mode Electric Transaxle. SAE Int. J. Engines 4, 2011-01–0887 (2011).


    Google Scholar
     

  • Oak Ridge National Laboratory. All-electric vehicles. https://www.fueleconomy.gov/feg/evtech.shtml.

  • Gasparatos, A., Stromberg, P. & Takeuchi, K. Sustainability impacts of first-generation biofuels. Anim. Front 3, 12–26 (2013).


    Google Scholar
     

  • Elhacham, E., Ben-Uri, L., Grozovski, J., Bar-On, Y. M. & Milo, R. Global human-made mass exceeds all living biomass. Nature 588, 442–444 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramsden, K. Cement and Concrete: The Environmental Impact. (2020).

  • PlasticsEurope (PEMRG); Conversio; nova-Institute. Annual production of plastics worldwide from 1950 to 2021 (in million metric tons). Statista https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (2023).

  • Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Center for International Environmental Law. Fueling Plastics. 5 https://www.ciel.org/wp-content/uploads/2017/09/Fueling-Plastics-Fossils-Plastics-Petrochemical-Feedstocks.pdf (2017).

  • Tilsted, J. P., Bauer, F., Deere Birkbeck, C., Skovgaard, J. & Rootzén, J. Ending fossil-based growth: Confronting the political economy of petrochemical plastics. One Earth 6, 607–619 (2023).

    ADS 

    Google Scholar
     

  • Guo, F. et al. Metabolic engineering of Pichia pastoris for malic acid production from methanol. Biotechnol. Bioeng. 118, 357–371 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, X. J. et al. Rewiring the native methanol assimilation metabolism by incorporating the heterologous ribulose monophosphate cycle into Methylorubrum extorquens. Metab. Eng. 64, 95–110 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ciebiada, M., Kubiak, K. & Daroch, M. Modifying the Cyanobacterial Metabolism as a Key to Efficient Biopolymer Production in Photosynthetic Microorganisms. Int. J. Mol. Sci. 21, 1–24 (2020).


    Google Scholar
     

  • World Bank. Average Prices for sugar worldwide from 2014 to 2024. Statista https://www.statista.com/statistics/675828/average-prices-sugar-worldwide/ (2023).

  • Andrew, R. M. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data 11, 1675–1710 (2019).

    ADS 

    Google Scholar
     

  • Wells, J. C. K. & Stock, J. T. Life History Transitions at the Origins of Agriculture: A Model for Understanding How Niche Construction Impacts Human Growth, Demography and Health. Front. Endocrinol.11, 325 (2020).


    Google Scholar
     

  • Molotoks, A., Smith, P. & Dawson, T. P. Impacts of land use, population, and climate change on global food security. Food Energy Secur 10, 1–20 (2021).


    Google Scholar
     

  • Ritchie, H. Food production is responsible for one-quarter of the world’s greenhouse gas emissions. online at OurWorldInData.org. https://ourworldindata.org/food-ghg-emissions (2019).

  • Ritchie, H. & Moser, M. Land use. online at https://ourworldindata.org/land-use (2013).

  • Ezeh, A. C., Bongaarts, J. & Mberu, B. Global population trends and policy options. Lancet 380, 142–148 (2012).

    PubMed 

    Google Scholar
     

  • Ritchie, H., Rosado, P. & Moser, M. Meat and Dairy Production. online at https://ourworldindata.org/meat-production (2017).

  • Maillot, M., Darmon, N., Darmon, M., Lafay, L. & Drewnowski, A. Nutrient-dense food groups have high energy costs: An econometric approach to nutrient profiling. J. Nutr. 137, 1815–1820 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Ritala, A., Häkkinen, S. T., Toivari, M. & Wiebe, M. G. Single Cell Protein—State-of-the-Art, Industrial Landscape and Patents 2001–2016. Front. Microbiol. 8, 2009 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sillman, J. et al. Bacterial protein for food and feed generated via renewable energy and direct air capture of CO2: Can it reduce land and water use? Glob. Food Sec. 22, 25–32 (2019).


    Google Scholar
     

  • Rubio, N. R., Xiang, N. & Kaplan, D. L. Plant-based and cell-based approaches to meat production. Nat. Commun. 11, 6276 (2020).


    Google Scholar
     

  • Leger, D. et al. Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops. Proc. Natl Acad. Sci. 118, e2015025118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humpenöder, F. et al. Projected environmental benefits of replacing beef with microbial protein. Nature 605, 90–96 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Pikaar, I. et al. Decoupling Livestock from Land Use through Industrial Feed Production Pathways. Environ. Sci. Technol. 52, 7351–7359 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dupuis, J. H., Cheung, L. K. Y., Newman, L., Dee, D. R. & Yada, R. Y. Precision cellular agriculture: The future role of recombinantly expressed protein as food. Compr. Rev. Food Sci. Food Saf. 22, 882–912 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Chai, K. F., Ng, K. R., Samarasiri, M. & Chen, W. N. Precision fermentation to advance fungal food fermentations. Curr. Opin. Food Sci. 47, 100881 (2022).

    CAS 

    Google Scholar
     

  • Hettinga, K. & Bijl, E. Can recombinant milk proteins replace those produced by animals? Curr. Opin. Biotechnol. 75, 102690 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Järviö, N. et al. Ovalbumin production using Trichoderma reesei culture and low-carbon energy could mitigate the environmental impacts of chicken-egg-derived ovalbumin. Nat. Food 2, 1005–1013 (2021).

    PubMed 

    Google Scholar
     

  • Ito, K. & Matsudomi, N. Structural Characteristics of Hen Egg Ovalbumin Expressed in Yeast Pichia pastoris. Biosci. Biotechnol. Biochem. 69, 755–761 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Linder, T. Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. Food Secur 11, 265–278 (2019).


    Google Scholar
     

  • Wang, T. & Gong, J. Artificial photosynthesis of food from CO2. Nat. Food 3, 409–410 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Frewer, L. et al. Societal aspects of genetically modified foods. Food Chem. Toxicol. 42, 1181–1193 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Energy Institute. Statistical Review of World Energy. Statista (2023).

  • Alexander, P. et al. Losses, inefficiencies and waste in the global food system. Agric. Syst. 153, 190–200 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mottet, A. et al. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).


    Google Scholar
     



  • READ SOURCE

    This website uses cookies. By continuing to use this site, you accept our use of cookies.